
Print	vs.	Return
Data	Mutation
Understanding the behavior of functions

Understanding	the	behavior	of	
functions

dbl(x) =2* x
Input: x Output: 2*x

What are the different
ways to “output” the
result of the function?

Function

Print	vs.	Return
def return_dbl(x):

return x*2

def print_dbl(x):
print(x*2)

>>> a = 32
>>> return_dbl(a)
?(1)
>>> print_dbl(a)
?(2)

Will the output of (1) and (2)
be the same?
A.Yes
B. No

Print	vs.	Return
def return_dbl(x):

return x*2

def print_dbl(x):
print(x*2)

>>> a = 32
>>> return_dbl(a)
?(1)
>>> print_dbl(a)
?(2)

Will the output of (1)
and (2) be the same?
A. Yes
B. No

Print	vs.	Return
def return_dbl(x):

return x*2

def print_dbl(x):
print(x*2)

>>> a = 32
>>> print(return_dbl(a))
?(1)
>>> print(print_dbl(a))
?(2) Will the output of (1)

and (2) be the same?
A. Yes
B. No

Print	vs.	Return
def return_dbl(x):

return x*2

def print_dbl(x):
print(x*2)

>>> a = 32
>>> print(return_dbl(a))
?(1)
>>> print(print_dbl(a))
?(2) Will the output of (1) and

(2) be the same?
A. Yes
B. No

Understanding	the	behavior	of	
functions

dbl(x) =2* x
Input: x

Output:

print(2*x)
vs.

return 2*x

Printing vs. returning the
output can lead to very
different behaviors!!!!!

Function

What	is	printed?		(Draw	boxes!)
def silly(a, b):

a = b + 1
b = a/2
print(a, ",", b)

>>> x = 67
>>> y = 13
>>> silly(y, x)

A. 67, 13
B. 68, 34
C. 14, 7
D. 8, 7
E. Something else

Can the silly function change
the value of parameters x
and y?

What	is	printed?		(Draw	boxes!)
def silly(a, b):

a = b + 1
b = a/2

>>> a = 67
>>> b = 13
>>> silly(b, a)
>>> print(a, ",", b)

A. 67, 13
B. 68, 34
C. 14, 7
D. 8, 7
E. Something else

Can the silly function
change the value of the
shell variables a, b?

What	is	printed?		(Draw	boxes!)
def silly(a, b):

a = b + 1
b = a/2

>>> a = 67
>>> b = 13
>>> silly(b, a)
>>> print(a, ",", b)

A. 67, 13
B. 68, 34
C. 14, 7
D.8, 7
E. Something else

Different a’s and b’s! Reassignment
within the function has NO EFFECT on
the variables in the interaction pane.

Can	a	function	change	the	value	of	
the	parameter	y?

F(x)
Input Output

>>>F(y) # Calling function F

Function

What	is	printed?		(Draw	boxes!)
def mutate(a):

a[0] = a[1] + 1
a[1] = a[0]/2

>>> x = [67, 13]
>>> mutate(x)
>>> print(x)

A. [67, 13]
B. [68, 34]
C. [14, 7]
D. [8, 7]
E. Something else

Can the mutate function
change the value of x?

Mutable vs. Immutable data

Changeable types: Unchangeable types:

list

string

int

float

bool

Pixel

Picture

(actually any user-
defined object)

Turtle

Lists	are	Mutable	Data

>>> myL = [1, 2, 3, 4]# same as myL = list(range(1,5))
>>> myL[3] = 42 # Indexing MUTATES the list!

myL [1, 2, 3, 4]
This list “lives” in your computer’s memory

>>> myL = range(1, 5)
>>> myL = range(10, 13)

myL [1, 2, 3, 4]

Reassignment	vs.	Data	Mutation

[10, 11, 12]

Just like any assignment, myL is REASSIGNED to a new value (i.e., a
new location in memory)

DANGER! This is likely the MOST
DIFFICULT topic you will learn in But

mastering this topic is the key to acing
this class!

>>> myL = list(range(1, 5))
>>> myL = list(range(10, 13))

myL [1, 2, 3, 4]

Reassignment vs.	Data	Mutation

[10, 11, 12]

Just like any assignment, myL is REASSIGNED to a new value (i.e., a
new location in memory)

>>> myL = list(range(1, 5))
>>> myL[1] = 10
>>> myL[2] = 11

myL [1, 2, 3, 4]

Reassignment	vs.	Data	Mutation

But these statements CHANGE the object that myL references

>>> myL = list(range(1, 5))
>>> myL2 = myL
>>> print(myL2[1])

myL [1, 2, 3, 4]

Reassignment	vs.	Data	Mutation

What does the above print?
A. 1
B. 2
C. 3
D. 4
E. Error

myL2

>>> myL = list(range(1, 5))
>>> myL2 = myL
>>> myL[1] = 42
>>> print(myL2[1])

myL [1, 2, 3, 4]

Reassignment	vs.	Data	Mutation

What does the above print?
A. 1
B. 2
C. 42
D. Error

myL2

>>> myL = list(range(1, 5))
>>> myL2 = myL
>>> myL = list(range(10, 13))
>>> myL[1] = 42
>>> print(myL2[1])

myL [1, 2, 3, 4]

Reassignment	vs.	Data	Mutation

What does the above print?
A. 2
B. 42
C. 11
D. Error
E. Something else

myL2

Functions	and	(immutable)	Variables

def swap(a, b):
temp = a
a = b
b = temp

>>> x = 5
>>> y = 10
>>> swap(x, y)
>>> print(x, y)
??

x

y

a

b

temp

Swap stack frame

What is printed?
A. 5, 10
B. 10, 5
C. Something else

Functions	and	Mutable	Types

def swap(L, i1, i2):
temp = L[i1]
L[i1] = L[i2]
L[i2] = temp

>>> MyL = [2, 3, 4, 1]
>>> swap(myL, 0, 3)
>>> print(myL)
??

MyL

L

i1

i2

Swap stack frame

[2, 3, 4, 1]

What gets printed?
A. [2, 3, 4, 1]
B. [1, 2, 3, 4]
C. [1, 3, 4, 2]
D. Something else

Reference vs. Value

Mutable types:

dictionary

Unmutable types:

list

tuple

string

int

float

bool

L
L[0] L[1] L[2]

Reference,
Pointer,

id

L = [5,42,'hi']

L
5 42 'hi'

42

L = 42

Whee!

What	is	printed?		(Draw	boxes!)
def mutate(a):

a[0] = a[1] + 1
a[1] = a[0]/2

>>> x = [67, 13]
>>> mutate(x)
>>> print(x)

A. [67, 13]
B. [68, 34]
C. [14, 7]
D. [8, 7]
E. Something else

Can the mutate function
change the value of x?

What	is	printed?		
def mutate(a):

a = “Diba”

>>> x = “Adib”
>>> mutate(x)
>>> print(x)

A. Diba
B. Adib
C. Something else

Can the mutate function
change the value of x?

“Pass By Value”

def main()
""" calls conform """
print " Welcome to Conformity, Inc. "

fav = 7
conform(fav)

print " My favorite number is", fav

def conform(fav)
""" sets input to 42 """
fav = 42

7

fav

fav

7

“Pass By Value”

def main()
""" calls conform """
print " Welcome to Conformity, Inc. "

fav = 7
conform(fav)

print " My favorite number is", fav

def conform(fav)
""" sets input to 42 """
fav = 42

7

fav

fav

PASS
BY

VALUE

“Pass by value” means that data is copied when sent to a method

42

Passing lists by value…
def main()

""" calls conform2 """
print " Welcome to Conformity, Inc. "
fav = [7, 11]
conform2(fav)
print " My favorite numbers are", fav

def conform2(fav)
""" sets all of fav to 42 """
fav[0] = 42
fav[1] = 42

What gets passed by
value here?

fav
L[0] L[1]

5 42

fav

Passing lists by value…
def main():

""" calls conform2 """
print " Welcome to Conformity, Inc. "
fav = [7, 11]
conform2(fav)
print " My favorite numbers are", fav

def conform2(fav):
""" sets all of fav to 42 """
fav[0] = 42
fav[1] = 42

fav
L[0] L[1]

7 11

fav

can change data
elsewhere!

The reference is
copied!

The conclusion

You can change the contents of lists in
functions that take those lists as input.

Those changes will be visible everywhere.

(actually, lists or any mutable objects)

(immutable objects are safe, however)

