
Tuples
Named	Tuples	
Accumulator	pattern
Nested	Loops

Tuples
• Similar to lists: store a sequence of elements
lst = [10, 20] //ex of a list
tup = (10, 20) //ex of a tuple

• Elements are ordered an can be accessed using the
appropriate index

tup[0]
tup[1]

• Different from lists in the following ways
• Can’t change an element in the tuple
• Can’t sort the elements in a tuple

Named	Tuples
• Used to package data with multiple attributes: e.g. representing a

student in your program
• A student’s attributes may be: name, perm number, major etc.
• Named tuples make it easier to access each attribute

from collections import namedtuple

#Design your named tuple object
Student = namedtuple(‘Student’, ‘name perm major gpa’)

Create objects of type Student
s1 = Student(“Jack”, 123443, CS, 3.8)
s2 = Student(“Mary”, 8932737, CE, 3.9)

Access the elements of the objects
print(s1.name, s1.perm)

The	accumulator	pattern:	ex01
Useful for "accumulating" something while going through a
collection.
Example: Count the number of times, count the number of
characters in a string, ...

def countElements(lst):
"returns the number of elements in lst”

The	accumulator	pattern:	ex02
Useful for "accumulating" something while going through a
collection.

def countOddNumbers(lst):
"returns the number of odd numbers in lst”

Accumulator	pattern:	ex03
def countWords(sentence):

”returns the number of words in the sentence”

Accumulator	pattern:	ex04
def countWords(sentence, len):

”returns the number of words in the
sentence with length greater than len”

The	accumulator	pattern:	ex05
Useful for "accumulating" something while going through a
collection.

def createListOfOdd(lst):
"returns a new list that contains all the odd
numbers in lst”

Nested	Loops
def drawRectangle(width, height):
”print a rectangle with given width
and height using the character *
(instead of turtle)”

For example drawRectangle(5,3)
should print

Nested	Loops
def drawTriangle(height):
”print a right triagle with given
height using stars(*). Assume the
size of the base and height are
equal”

For example drawTriangle(3)
should print

*
**
