
More	on	Dictionaries
Sets

Example	usage	of	dictionaries
• Let's say we're bird-watching, and we want to keep track of

the number of each type of bird we've seen

kind count
falcon 1
owl 5
hawk 2
eagle 11

• One approach: parallel lists
• The element kinds[i] corresponds with counts[i]

kinds = ['falcon', 'owl', 'hawk', 'eagle’]
counts = [1, 5, 2, 11]

Concep Test:	

What code should go in place of the missing code?
A. counts.append(0)
B. counts.append(1)
C. counts.append(kind)
D. No code necessary there

Dictionaries	vs.	Parallel	Lists

• Rewrite the new_sighting function
• Compared to parallel lists:
• Only one dict (not two)
• No call to index that might search the whole list

bird_dict=
{'falcon': 1, 'owl': 5, 'hawk': 2, 'eagle': 11}

Adding	to	dictionaries
• Keys must be immutable
• Values can be mutable or immutable
• Use d[k] = v to add key k with value v to dictionary d
• If k is already present, its value is overwritten

• To copy all key/value pairs from another dictionary, use the
update method

Getting	Values	from	Dictionaries
• Use d[k] to obtain the value associated with key k of dictionary d
• If k does not exist, this causes an error
• The get method is similar, except it returns None instead of

giving an error when the key does not exist
• If a second parameter v is provided, get returns v instead of

None when the key is not found

Concept	Test

Concept	Test

More	practice
def count_occurrences(L):
'''return a dictionary in which the keys are
the elements in L and their associated values
are integers denoting the number of times the
element is contained in L.
>>> count_occurrences([8, 9, 8, 8, 9])
{8:3, 9:2}
'''

Python	Sets
• Similar to sets in math
• A collection of items with:
• no duplicates
• order and position does not matter

• Keep track of unique items (active IDs, SSN, Driver's License)
• Efficient lookup (is something there or not)

Syntax:
{<value1>,<value2>,...,<valuen>}

Python	Set	Operators	&	
Methods
Assume s1 and s2 are two sets

• Common operators: in, not in
• Union: s1 |s2
• Intersection: s1 & s2
• Difference: s1- s2
• Unique items: s1^s2
• Comparisons: ==, != , <, > , <=, >=

Set methods
• add()
• remove()
• discard()

